Spotlight

New Lungs for a 101-Year-Old Home Pt.2: Total HVAC Replacement!

Key Points:

• This is a continuation of our “New Lungs for a 101-Year-Old Home” project, where a CERV2 Smart Ventilation System was integrated into an existing central furnace/AC system. The existing supply ducts for the kitchen and bathroom were converted to return/exhaust ducts for the CERV, and a new exhaust duct was added for the previously unducted half-bath. Zone dampers were also installed for smart spot-ventilation.

• In Part 2, we took a big leap and removed the entire central furnace/AC, and replaced them with two new ultra-efficient 1-ton ducted Mitsubishi Hyper-Heat mini-splits. This involved re-ducting the whole house too!

• Mitsubishi Heat Pump Model Numbers - Indoor Units: PEAD-A12-42AA7, Outdoor Units: SUZ-KA12NAHZ

• Many thanks to Mitsubishi for sponsoring this project with the donation of the heat pumps! Mitsubishi has worked hard to stay at the forefront of energy efficient comfort conditioning, and their new products really open up new pathways for heat pumps in the toughest climates. Illinois has hot, muggy summers, and dark, bitter cold winters, so stay tuned for performance and efficiency data in an upcoming article!

• Ductwork is challenging and takes a great deal of planning to get right. I have great appreciation for all you HVAC technicians out there!

CERV Retrofit - New Lungs for a 101-Year-Old Home

Written by Alex Long, co-founder of Build Equinox

Welcome back for round two! We took a bit of a breather after part 1 (integrating the CERV2 into our existing furnace/AC), but now we’re back at it! Our end goal of this project is to demonstrate how to completely retrofit an old home’s HVAC by removing and replacing the old inefficient 100 kBTU gas furnace, 3-Ton AC, and gas water heater. The furnace and AC will be replaced by two new ultra-efficient 1-ton ducted Mitsubishi Hyper-Heat mini-splits and the gas water heater will be replaced with a Rheem hybrid-electric water heater (stay tuned for part 3). And most importantly, the CERV provides fresh air to the home when things get stinky!

Why go through all this trouble? Because we can...and should! By removing the natural gas appliances in our home we will:

• Lower our utility bills. Service fees for natural gas keep climbing, and alone add up to nearly $400 every year! Winter heating can be efficiently accomplished with electric heat pumps. The Mitsubishi H2i Hyper-Heat units still retain full capacity down to 23F, and even at -13F only drop to 76%.

• Improve air quality. If you have gas combustion inside your house, you don’t have good air. Approximately 50,000 people in the U.S. visit the emergency department each year due to accidental CO poisoning.

• Decrease infiltration. Since we didn’t have an “external combustion air” furnace, the furnace and water heater used inside air for combustion. That air is blown out through the flue chimney, which puts a negative pressure on the house and sucks unconditioned outside air in through gaps and cracks.

• Not explode. A few weeks ago I saw a huge plume of black smoke as I drove to work, where a house literally exploded from a natural gas leak. From the article: “A patron of the nearby Cracker Barrel restaurant on Kenyon Road said that her family saw the ‘whole roof fly straight up over the treetops’”. Luckily, no one was seriously injured, but I prefer my roof to still be attached to the walls.

Pre-Retrofit Layout

Lets take a quick look at how the home was ducted (this was mostly covered in the Part 1 Article). The returns for the 1st floor half bath and kitchen, as well as the 2nd floor full bath, are all connected directly to the CERV so that it can quickly exhaust these spaces when pollutants are high. The 1st floor dining room return is directly connected to the central furnace. The CERV outlet is also ducted to the furnace inlet, allowing it to feed fresh air into the supply ductwork for both floors. This is a good airflow layout, and will stay the same, but the manner in which we accomplish it will change!

Airflow visualization for first and second floors.
A very confusing mess of ducts somehow connected the furnace to all the registers.

Removing the old furnace and AC

Behold, the monstrosity. This isn’t actually a load-bearing wall, but at some point in time I’m sure this wall was used to hold up some ugly wood paneling.
I added in an extra support column to an area where the joists had been cut for the return register to the furnace. Don’t let the aluminum tape fool you, most of the ductwork was being held together by crumbling ancient duct-tape (alternatively, they very well may have been mummy bandages).
If you’re taking out an old air conditioning system, ALL of the refrigerant must be captured. It’s bad for the environment and the fine for releasing refrigerant into the air is many thousands of dollars.
Ductwork is supposed to be completely rusted out, right?

The furnace and AC were fully removed, as well as the ductwork to each register. All the ducts were filthy, but I scrubbed them down to reuse for the new system. The furnace and AC unit were still in good condition, so I sold them online.

Installing the outdoor unit

Now that all the old stuff was removed we can put in the new stuff! We started with installing the outdoor units.

The two outdoor units are going in roughly the same location as the old AC’s outdoor condenser, on the North side of the house.

The outdoor units need to be raised off the ground to protect against snow and ice buildup during the winter. We’re using Diversitech EL1838-3 condenser pads, which measure 3” x 18” x 38”. To help protect the pads from moving laterally, we inserted 6” lengths of 1/2" rebar in each of the corners of the pad (the rebar will stick into the ground once we bolt down the units).

Left: Dimensions and required clearances for the Mitsubishi SUZ-KA12NAHZ 1-ton outdoor unit.
Right: Pad locations for the two outdoor units, properly spaced. Two outdoor disconnect boxes (Part: Eaton DPB222RP) were installed, each with a 15A 2-pole breaker.
My unpaid intern (aka Dad) helping to bolt down the units to the pads.
Outdoor units wired

The main power coming into the unit is 208/230VAC (14 GA wire in the far right 2 terminals). The outdoor unit actually powers the indoor unit, so the 3 terminals on the left labeled S1, S2, and S3 are connected with 14 GA 3 conductor + ground NM-B cable. S1 and S2 are the main power terminals for the indoor unit (208/230VAC again), while S3 is the communication line so the indoor and outdoor can talk.

Hanging the indoor units

Next step was installing the indoor units in the basement near where the old furnace/AC was. From rough measurements, it looked like we would need approximately 40 feet of refrigerant tubing and wiring between each indoor unit and outdoor unit. The outdoor units come pre-charged with refrigerant, and luckily 40 feet is short enough that no extra refrigerant would be needed.

The two indoor units boxed, but ready to hang. They’re light enough that they can easily be hung from the floor joists.
Ta-Da! The main concern when hanging the indoor unit is keeping everything level so that condensate can properly drain.

For wiring the indoor unit, it’s required to have a disconnect switch to easily shut off power. I used a 30A 120/277 VAC Double Pole light switch (Part #: PS30AC2ICC6) connected to lines S1 and S2 before they enter the indoor unit.

For the refrigerant piping, the cleanest installation required drilling four 1” holes in the joists above the hanging indoor units. Each system has two refrigerant lines – 1/4” copper tubing for liquid refrigerant, and 3/8” for vapor refrigerant. The copper pipe is then insulated with flexible rubber foam pipe insulation (McMaster Part #s: 4463K23 for 1/4", and 4463K121 for 3/8”).

Refrigerant connections on these units are all “Flare” style fittings. This is an area that you want to be very very careful and neat! A bad flare fitting can cause your system to leak out its refrigerant and potentially cause damage to the system.

Time to check for leaks! The refrigerant is still all sealed in the outdoor units, so we want to be sure the new refrigerant pipes are leak-free before we let it out. This involves first pressurizing the piping with Nitrogen, then using a soapy water solution to see if we get any bubbles at any of the flare fitting joints.

I pressurized the piping in both systems to 100psi, and no leaks were found! Just to be extra sure (my wife often calls me “extra”, I wonder if this is what she means...), I left the pipe pressurized over night and checked to make sure we still had 100psi.

After pressurizing with Nitrogen the next step is to pull a vacuum on the refrigerant pipes. This is very important because air left in the pipes will contain moisture, and that moisture will react with the refrigerant to do nasty things to your brand-new heat pump. I ran the vacuum pump while eating breakfast, then left it to sit again for another day to make sure they both still held vacuum. Because I’m extra.

That’s about it for the indoor and outdoor unit installations! All in all, I estimate it took my dad and me about 3 full workdays, with plenty of trips to the hardware store mixed in. All the assorted parts (refrigerant pipe, fittings, insulation, mounting pads, etc.) added up to about $400. Next up – ducting!

Ducting: Theory

You may be asking yourself: why two 1-ton units instead of one 2-ton? Installed cost would definitely be lower, and there’d be half as much work to do.

Well, here’s a big ol’ report we wrote 2 years ago, if you feel like a good read. For a short answer, though, I want to be able to zone the comfort conditioning in my house between the first and second floors! I expect to see even lower utility bills, but we’ll get to that in an upcoming article about performance.

To make things nice and easy, each floor only has 3 supply registers. The first floor has one in the dining room and two in the living room. I created a custom outlet plenum for each minisplit with one 6” round duct outlet and one 8” round duct outlet (design shown a in the next section). For the first floor, the 6” duct outlet will travel directly to the dining room register. The 8” duct will actually carry air to both of the living room registers – once it reaches the first, it has a Tee connection and then reduces the duct size to 6” for the other living room register.

Similarly, the second floor repeats the same pattern. The duct to the master bedroom is 6” diameter, while an 8” duct brings air to the guest bedroom, then tees and reduces down to 6” for the office. The vertical duct stacks in the walls up to the second-floor measure approximately 3” x 12”, which is roughly equivalent to 7” round duct in terms of pressure loss.

Ducting: outlet plenums

As mentioned earlier, here are the heat pump outlet duct plenums, along with the part dimensions. This was made out of a duct-board called “Koolduct”, which is not only structural, but also R8.0 for a 1 3/16” panel! We use this high-quality duct-board in the CERV, so I was able to apply my employee 5-finger discount for some scraps.

I added foam gaskets on the back side of the plenums to help seal against the heat pumps, then secured to the units with aluminum tape and used duct strap to add vertical support.

Ducting: Ducting the Ducts

A 95 degree heat wave was rapidly approaching, and we needed cooling ASAP! I reused all of the old ductwork we had removed (after cleaning of course), which saved a ton of money. Ductwork was hung with “Duct Support Webbing” (part # PS134B-4RL), and duct joints were screwed together with sheet metal screws and then painted with mastic to seal. Might as well do it right this time around!

Proper ductwork installation also includes insulating the ductwork! Even though all the ductwork is within conditioned space in the basement, we still want to minimize losses before the air gets to its destination. To insulate the sheet metal ducting, I used the fiberglass insulation sleeves from flexible insulated ductwork. In some cases, I was able to slide the sleeves right over the ductwork, but other times I had to cut the outer plastic sleeve, then wrap the fiberglass and re-tape the seam.

The insulation’s black sleeve also helps make the ductwork a little less noticeable and organized. Not looking too bad!

Ducting: CERV outlet & Central inlet

So now the heat pumps can deliver comfort conditioning to the rooms. The CERV can pull stale air from the bathrooms and kitchens. How do we connect the CERV to the heat pumps?

The general rule of thumb for comfort conditioning is: 400 CFM (cubic feet of air per minute) per ton of air conditioning. Now, the CERV’s airflow capacity is pretty close to that, so if we only had one ton of conditioning, we could directly connect the outlet of the CERV to the inlet of the heat pump.

If only it was this easy and we had one heat pump. Click the image above to check out our Sketchup model for ideas how to interconnect the CERV to a single unit.

But we have two. 800 CFM would be way too much airflow to go through the CERV, so we need a different solution. We need the heat pumps to have their own central filtered intake, but we also need the CERV to be able to inject its fresh air supply to the heat pumps.

Hopefully this will help with any confusion, because it took me forever to conceptualize and design. The CERV’s supply air is already filtered, so we don’t want to pass it through another filter and slow it down. But if we have another parallel central return to the heat-pumps, we definitely want that air to be filtered because our house is a cat hair factory.

Return Plenum for 1st floor heat pump
Return Plenum for 2nd floor heat pump

The common return plenum for each of the two heat-pumps is made with 8” x 10” rectangular 28ga sheet metal duct. The above designs were cut from the sheet metal, then fastened together, as seen below.

12” x 24” filter brackets. The filter slides up into the return plenum with the help of 1” C Channel.
Filter brackets mounted into one half of the 8” x 10” rectangular duct (this is for the 1st floor unit).
Assembled return plenum for the 2nd floor unit. The square opening will be the central return, and the duct fitting will attach to the CERV. Foam gasket is used around the large opening that mates to the inlet of the heat-pump.
Return plenums mounted. Apologies if this makes your brain hurt, the duct is just so shiny that it was hard to get a good picture.
Here’s conceptually how it looks with ducts connected. The outlet of the CERV is 8” round, which then tees off to two 6” ducts – one to each mini-split.
And here is the CERV outlet connection to the return plenum.

The green tape at the bottom corner of the return plenums is where the filters are inserted. I’m going to make a nice little latch that opens for an easy filter change.

The End Result

There’s so much room for activities!

I have fooled you all, because the whole reason for this project was to make our gym space larger! Seriously, though, this project has basically opened up an entirely new room’s worth of usable space, and that’s very valuable! The average cost per square foot for a home in the US is $123 (source: Realtor.com), so you might as well put it to good use. I’ll be extending out our rubber gym flooring back into this previously unused space.

And while I’ve got you here, I’m going to brag about our home gym setup

We have:

• A Rogue Ohio Power Bar, York Power Bar, 2 beater bars, Football Bench Bar, Safety Squat Bar, Trap Deadlift Bar, EZ Curl Bar

• Dumbbells from 15lbs up to 110lbs

• 1300 lbs of barbell plates

• A custom metal Power Rack, designed and poorly welded by yours truly

Now think about how much more we can fit with the extra space!

Stay tuned for next month's article where we finish the gas to electric conversion with a new heat pump water heater!

Share

Subscribe to Newsletter

Archives

Filter
DateTitle
November 17, 2020 Events – CERV2 Smart-er Ventilation Product Demo (Video + PDF) 20201117
November 16, 2020 Spotlight – New Lungs for a 101-Year-Old Home Pt.3: Heat Pump Water Heater! 20201116
November 15, 2020 Featured Article – Equinox Meets the Needs / ASHRAE Solar ZEB Article 12 20201115
November 12, 2020 Special Edition – Stay Safe this Holiday Season! 20201112
October 29, 2020 Spotlight – New Lungs for a 101-Year-Old Home Pt.2: Total HVAC Replacement! 20201029
October 28, 2020 Featured Article – Equinox House Performance / ASHRAE Solar ZEB Article 10 20201028
September 22, 2020 Events – Michigan Residential Net Zero Energy Conference (Oct 20-22) 20200922
September 22, 2020 News – CERV-UV Now Available for New Orders! 20200922
September 22, 2020 News – CERV-ICE Now in the iOS and Android App Stores! 20200922
September 22, 2020 Featured Article – Solar Collection & Use / ASHRAE Solar ZEB Article 10 20200922
August 17, 2020 Special Edition – Build Equinox Groundbreaking Research into COVID 19 20200817
August 17, 2020 Events – SEDAC Webinar: Considerations, Best Practices, and Energy Implications for Reopening Critical Community Facilities in the Pandemic (Aug 18, 2020) 20200817
August 17, 2020 Featured Article – Comfort Conditioning & Indoor Air Quality / ASHRAE Solar ZEB Article 9 20200817
August 17, 2020 News – Building Science Podcast: “Ventilation & Virus Transmission Prevention” 20200817
August 14, 2020 News – New HVAC School Podcast: “Advanced Ventilation w/ CERV2” (Watch/Listen) 20200814
August 12, 2020 Events – Free CEU Webinar: Can Building Science Help Us Slow COVID-19? (Sep 2, 2020) 20200812
July 10, 2020 Tech – Ultimate Ultraviolet! 20200710
July 10, 2020 Special Edition – Covid-19 Update: Airborne Means AIRBORNE! 20200710
July 10, 2020 Featured Article – Appliances Power EVs / ASHRAE Solar ZEB Article 8 20200710
June 29, 2020 Events – Free New Webinar: Guidelines for Protecting Against COVID-19 (PDF + Slides) 20200629
June 25, 2020 Featured Article – Designing a Thermally Massive Home/ASHRAE Solar ZEB Article 7 20200625
June 25, 2020 Special Edition – Covid19 Status Report: We are at the Beginning of the Pandemic, Not the End 20200625
May 29, 2020 Spotlight – CERV Retrofit: New Lungs for a 101-Year-Old Home 20200529
May 29, 2020 Special Edition – Covid19 Status Report: Guidelines for Homes & Businesses 20200529
May 29, 2020 Featured Article – Ground Heat Transfer/ASHRAE Solar ZEB Article 6 20200529
April 16, 2020 Events – Free CEU Webinar: Covid-19 Characteristics, Transmission, and Control (April 29th) 20200416
April 16, 2020 Special Edition – Battling the Spread of Covid-19 20200416
April 16, 2020 Featured Article – Infiltration & Sealing/ASHRAE Solar ZEB Article 5 20200416
April 16, 2020 Spotlight – New Projects: 1930s CERV Retrofit & Mitsubishi Hyperheat 20200416
March 13, 2020 Featured Article – Light and Delight/ASHRAE Solar ZEB Article 4 20200313
March 10, 2020 News – CERV Voted One of the Top 16 Coolest Things Made in Illinois! 20200310
March 5, 2020 Special Edition – Fighting COVID-19 with Fresh Air 20200305
February 24, 2020 Featured Article – Walls and Roof/ASHRAE Solar ZEB Article 3 20200224
February 24, 2020 Tech – Magic-Box Mechanicals 20200224
February 24, 2020 Events – Designing Exceptional Homes for Exceptional People Webinar (Video + PDF) 20200224
January 30, 2020 Events – Visit us (Booth 17) at Energy Design Expo in Duluth (2/25-26) 20200130
January 14, 2020 Tech – Designing Exceptional Homes for Exceptional People 20200114
January 14, 2020 Featured Article – Designing for Zero/ASHRAE Solar ZEB Article 2 20200114
December 19, 2019 Events – Free Webinar: Smart Ventilation & Air Distribution (Video+PDF) 20191219
December 19, 2019 Events – CERV2 Smart-er Ventilation Product Demo (Video + PDF) 20191219
December 19, 2019 Spotlight – Acorn Glade: 2019 NAPHC Awardee! 20191219
December 16, 2019 Featured Article – Equinox Origins/ASHRAE Solar ZEB Article 1 20191216
November 19, 2019 Events – Visit our booth at 2019 NAPHC in Washington DC! 20191119
November 19, 2019 Spotlight – Equinox House Turning 10! 20191119
November 19, 2019 Featured Article – Handling Humidity Pt.4 Putting it All Together 20191119
October 16, 2019 Events – Mechanical Systems for Passive Buildings (Chicago, Oct 16) 20191016
October 16, 2019 Featured Article – Handling Humidity Pt.3 Methods for Managing Moisture 20191016
October 16, 2019 Events – Free Webinar: Handling Humidity (Video + PDF) 20191016
October 16, 2019 Events – Free CEUs: Building Green & Beer at Founders Brewing (Oct 28) 20191016
October 16, 2019 Spotlight – Inter House Wins Solar Decathlon Africa!!! 20191016
September 20, 2019 Featured Article – Handling Humidity Pt.2 Climate Moisture Variations 20190920
September 20, 2019 News – Brand New Release: Colorfil VOC Absorbing Filters! 20190920
September 20, 2019 Tech – From CERV to CERVEZA: a Quest for Smart Beer 20190920
August 27, 2019 Events – Earn Free CEUs with the Handling Humidity Webinar (Aug 29) 20190827
August 27, 2019 Featured Article – Handling Humidity Report Series 20190827
August 12, 2019 News – Listen to the Building HVAC Science Podcast, ft. Ty Newell! 20190812
July 29, 2019 Events – CERV2 Smart-er Ventilation Product Demo (Aug 27, 2019) 20190729
July 29, 2019 Featured Article – Poor Home Maintenance = Increased Health Risks 20190729
July 29, 2019 Tech – Say Hello to Our New Server! 20190729
June 19, 2019 Featured Article – Watch out for Cranky Heaters! 20190619
June 19, 2019 Events – Free CEU Webinar: Smart Ventilation & Air Distribution (July 10) 20190619
June 19, 2019 Spotlight – Marrakech Express! CERV2 Heading to Africa! 20190619
May 13, 2019 Featured Article – Taylor Home CERV Testimonial 20190513
May 13, 2019 Events – 7 Steps for Designing an Economical Net Zero Home (Video + PDF) 20190513
May 13, 2019 Tech – AeroBarrier Demonstration 20190513
April 15, 2019 Events – Indoor Air Quality Metrics Free Webinar (Apr 24, 2019) 20190415
April 15, 2019 Featured Article – CERV2 Geo–Boost Release 20190415
April 15, 2019 Review – 2019 National Home Performance Conference 20190415
April 15, 2019 Tech – CERV2 Sketchup Model Now Available 20190415
March 28, 2019 News – Visit us at the Chicago 2019 National Home Performance Conference 20190328
March 28, 2019 Featured Article – Happy Equinox, St. Patrick’s Day, and Super Moon! 20190328
February 27, 2019 Events – Free CEU Webinar: Smart Ventilation & Air Distribution (Mar 12) 20190227
February 27, 2019 Featured Article – Smart Ventilation and Smart Air Distribution Reports 20190227
February 27, 2019 Spotlight – El Salvador NZEB Update 20190227
February 25, 2019 Events – CERV2 Smart-er Ventilation Product Demo (Video + PDF) 20190225
January 22, 2019 Events – Smart Ventilation & Smart Air Distribution Webinar (Video & PDF) 20190122
December 26, 2018 Spotlight – Progressive Canada 20181226
December 26, 2018 News – Happy Holidays from Build Equinox! 20181226
December 26, 2018 Review – CERV2 at Greenbuild 2018 20181226
November 26, 2018 News – CERV OEM Filter Store is OPEN!!! 20181126
November 19, 2018 News – Check Out Our Social Media! 20181119
October 24, 2018 Events – Free CEU Webinar: Duct Design & Performance (PDF Download) 20181024
October 24, 2018 Featured Article – CERV2 is UL Approved! 20181024
October 24, 2018 News – Stop by Our Booth at Greenbuild Chicago (Free Tickets!) 20181024
October 24, 2018 Spotlight – University of Illinois Students Visit Build Equinox 20181024
July 23, 2018 Featured Article – Happy 10th Birthday, CERV and Sunflower! 20180723
July 23, 2018 Spotlight – Good News from El Salvador! 20180723
June 22, 2018 Tech – Installing a Ductless Mini-split 20180622
June 22, 2018 Featured Article – Mini-split Mania! 20180622
April 30, 2018 News – Now offering on-demand webinars for CEUs! 20180430
April 30, 2018 Events – Free CEU Webinar! (May 2, 2018) 20180430
April 30, 2018 Featured Article – Ductology Part 2 20180430
February 19, 2018 Review – 2018 Better Buildings by Design Conference, Flu and Colds 20180219
February 19, 2018 Featured Article – Hot Water! 20180219
January 22, 2018 Events – Visit us at BuildingEnergy Boston! (March 7-9, Boston, MA) 20180122
January 22, 2018 Events – Efficiency Vermont Better Buildings by Design Conference (Feb 7-8) 20180122
January 22, 2018 Featured Article – Ductology (Part 1) 20180122
November 20, 2017 Featured Article – Heat Pump (Hybrid) Clothes Dryers are Coming! 20171120
October 31, 2017 Featured Article – CERV2 Measures IAQ at NAPHC & NAPHN 20171031
September 25, 2017 Featured Article – Introducing CERV2 20170925
August 21, 2017 Events – Free CEU Webinar! (Sep 27, 2017) 20170821
August 21, 2017 Featured Article – Quiz 20170821
July 27, 2017 Events – New IAQ Metrics Webinar (Video + PDF) 20170727
July 25, 2017 Featured Article – Endotoxins: Small But Very Significant 20170725
May 22, 2017 Events – Economical Net Zero Design Webinar (Video+PDF) 20170522
May 22, 2017 Featured Article – Styrax Japonicus 20170522
April 28, 2017 Events – 7 Steps for Designing an Economical Net Zero Home (May 25) 20170428
April 28, 2017 Featured Article – Engineering Net Zero Homes 20170428
March 20, 2017 Featured Article – Build Equinox Zero Plus Facility 20170320
February 14, 2017 Featured Article – February Flu 20170214
January 20, 2017 Events – HRV, ERV and Smart Vent Systems, Free CEU Webinar (Feb 15) 20170120
January 20, 2017 Events – NESEA IAQ Metrics Presentation (Mar 9, Boston, MA) 20170120
January 19, 2017 Featured Article – The Perfect Dust Storm 20170119
January 12, 2017 Events – Efficiency Vermont Better Buildings by Design Conference (Feb 1-2) 20170112
December 26, 2016 Featured Article – Happy Holidays from Build Equinox! 20161226
November 29, 2016 Featured Article – Geo-Boost 20161129
November 29, 2016 Spotlight – This Old Passive House 20161129
November 29, 2016 Review – House Music 20161129
October 28, 2016 Featured Article – Comparing ERV, HRV, and CERV 20161028
October 28, 2016 Spotlight – Net Zero Eco-House (Monticello, IL) 20161028
October 28, 2016 Spotlight – Forty Under 40 20161028
September 28, 2016 Events – Free CEU Webinar (Oct 5th): Why are new Indoor Air Quality metrics needed? 20160928
September 28, 2016 Review – 2016 North American Passive House Conference 20160928
September 28, 2016 Featured Article – New CERV-ICE IAQ Analytics Released! 20160928
September 28, 2016 Spotlight – CERVs in Passive Homes, pt. 2 20160928
August 18, 2016 Featured Article – Understanding the House as a System 20160818
August 18, 2016 Spotlight – CERVs in Passive Homes 20160818
August 18, 2016 Review – “What is IAQ?”, P. Ole Fanger 20160818
August 18, 2016 Tech – CERV CO2/VOC Library 20160818
July 19, 2016 Events – September North American Passive House Conference 20160719
July 18, 2016 News – CERV Website 20160718
July 18, 2016 Featured Article – VERMOD CERV Report Released 20160718
July 18, 2016 Review – LBNL report: “Houses are Dumb Without Smart Ventilation” 20160718
July 18, 2016 Spotlight – Professor P. Ole Fanger (1934-2006); IAQ and Comfort Pioneer 20160718
July 18, 2016 Tech Note – Airflow Calculation for Ventilation Systems 20160718
Call 1-773-492-1893
Visit 1103 N. High Cross Rd. Urbana, IL 61802
Email moc.xoniuqedliub@ofni
Follow
About Learn More about us!
© Build Equinox 2020